Joint Subspace and Low-Rank Coding Method for Makeup Face Recognition
نویسندگان
چکیده
Facial makeup significantly changes the perceived appearance of face and reduces accuracy recognition. To adapt to application smart cities, in this study, we introduce a novel joint subspace low-rank coding method for exploit more discriminative information images, use feature projection technology find proper learn dictionary such subspace. In addition, constraint learning. Then, design learning framework iterative optimization strategy obtain all parameters simultaneously. Experiments on real-world dataset achieve good performance demonstrate validity proposed method.
منابع مشابه
Face Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملSemi-random subspace method for face recognition
2. State Key Lab. for Novel Software Technology, Nanjing University, P.R. China Abstract: The small sample size (SSS) and the sensitivity to variations such as illumination, expression and occlusion are two challenging problems in face recognition. In this paper, we propose a novel method, called semi-random subspace (Semi-RS), to simultaneously address the two problems. Different from the trad...
متن کاملProjection Incorporated Subspace Method for Face Recognition
Two decades of research shows that Principle Component Analysis is effective and convenient for representation and recognition of human face images. It is a kind of subspace method. Many successful face recognition algorithms follow the subspace method and try to find better subspaces for face recognition. In this paper, we present the projection incorporated subspace method based on PCA. This ...
متن کاملLatent Low-Rank Transfer Subspace Learning for Missing Modality Recognition
We consider an interesting problem in this paper that uses transfer learning in two directions to compensate missing knowledge from the target domain. Transfer learning tends to be exploited as a powerful tool that mitigates the discrepancy between different databases used for knowledge transfer. It can also be used for knowledge transfer between different modalities within one database. Howeve...
متن کاملSubspace based low rank & joint sparse matrix recovery
We consider the recovery of a low rank and jointly sparse matrix from under sampled measurements of its columns. This problem is highly relevant in the recovery of dynamic MRI data with high spatio-temporal resolution, where each column of the matrix corresponds to a frame in the image time series; the matrix is highly low-rank since the frames are highly correlated. Similarly the non-zero loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2021
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2021/9914452